
July 1994 Report No. STAN-CS-TR-94-1517

PB96-150305

Reactive, Generative and Stratified
Models of Probabilistic Processes

by

Rob J. van Glabbeek, Scott A. Smolka and Bernhard Steffen

EhatnDai^_J^:

Department of Computer Science

Stanford University

Stanford, California 94305

19970609 034
»22C QUALITY n-7,T7'71«T3D &

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-01 »8

PubMc iiuoninu burden for th» collection of information it eiumated to average I hour ot reipome. including the timt for reviewing innrucaonv searching earning data wurctl.
aitnennq end maintaining the data naadad. and completing and reviewing trie collection of information. Send comment» regarding thn burden animate or any other aspect of thn
Millaninr -* •***-**•**> mriudiM •»»••-««•_«~ »educing thn burden, to Wellington Headquarter» Service». Directorate for Information Operation» and jeporu. HI» ieffenon

mi ii i ii
PB96-150305

OamH
»-»ducing thn burden, to Waihington i

and to the Office of Management and ludget. »eperwont «.eduction *rof»<t(0704-om). Washington, OC 20W3.

2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE «

&
6.AUTHOR(S) «

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

£ts*JW U^^MJU , Ctf JH?o5"> USA
SUMY cd £&*£ ®L~£J NY "J91 > "M

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES)

QN'tl

NSF
HFOSR

5. FUNDING NUMBERS

ONR C 2. JDMfl My J
Nooo if -4Z-J- IJJt

[c c #-j 2. o gses

PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES .
<_ %^i

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

We introduce three models of probabilistic processes, namely, reactive, generative and stratified.
These models are investigated within the context of PCCS, an extension of Milner's SCCS in
which each summand of a process summation expression is guarded by a probability and the
sum of these probabilities is 1. For each model we present a structural operational semantics of
PCCS and a notion of bisimulation equivalence which we prove to be a congruence. We also show
that the models form a hierarchy: the reactive model is derivable from the generative model
by abstraction from the relative probabilities of different actions, and the generative model
is derivable from the stratified model by abstraction from the purely probabilistic branching
structure. Moreover the classical nonprobabilistic model is derivable from each of these models
by abstraction from all probabilities.

"COUCUTLKCY, f*oft«B,t..-sr/c «•*>«=**«, «cs, STRUCT*,.*

17. SECURITY CLASSIFICATION
OF REPORT

UN CLASS/>(£/}

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLfl SI/T/£Z>

IS. NUMBER OF PAGES

37
1«. PRICE CODE

20. LIMITATION OF ABSTRACT

U.L. .

Reactive, Generative and Stratified Models
of Probabilistic Processes

Rob J. van Glabbeek*
Computer Science Department, Stanford University

Stanford, CA 94305-2140, USA
rvgQcs.Stanford.edu

Scott A. Smolkat

Department of Computer Science, SUNY at Stony Brook
Stony Brook, NY 11794-4400, USA

sasScs.sunysb.edu

Bernhard Steffen
Institut für Mathematik und Informatik, Universität Passau

94040 Passau, Germany
busSfmi.uni-passau.de

We introduce three models of probabilistic processes, namely, reactive, generative and stratified.
These models are investigated within the context of PCCS, an extension of Milner s SCCS in
which each summand of a process summation expression is guarded by a probability and the
sum of these probabilities is 1. For each model we present a structural operational semantics of
PCCS and a notion of bisimulation equivalence which we prove to be a congruence. We also show
that the models form a hierarchy: the reactive model is derivable from the generative mode
by abstraction from the relative probabilities of different actions, and the generative model
is derivable from the stratified model by abstraction from the purely probabilistic branching
structure. Moreover the classical nonprobabilistic model is derivable from each of these models

by abstraction from all probabilities.

1 Introduction

In the reactive model [Pnu85] of classical concurrency theory, a process reacts to stimuli P^ted
by its environment. A mechanistic view of the reactive model has been given by Milner [M1I8O]
in terms of button pushing experiments. The environment or observer experiments on a process
by attempting to depress one of several buttons that the process possesses as its interface to the
outside world. The experiment succeeds if the button is unlocked and therefore goes down; otherwise

«Research supported in part by ONR Grant N00014-92-J-1974. * Arrn0T, n .
W* snorted in part by NSF Grants CCR-8704309, CCR-9120995, and CCR-9208585; and AFOSR Grant

F49620-93-1-0250.

DTLQ QUAII?? UPSEECJIED Z

Figure 1: Reactive process P and generative process Q.

the experiment fails. In response to a successful experiment, the process makes an internal state
transition and is then ready for further experimentation.

The reactive model has been adopted by Larsen and Skou [LS91] for probabilistic processes:
a button-pressing experiment succeeds, with probability 1, or else fails. If successful, the pro-
cess makes an internal state transition according to a probability distribution associated with the
depressed button and the current state of the process.

In the probabilistic case, it is interesting to consider a more "probabilistic" form of experimen-
tation we call the generative model. In this setting, an observer may attempt to depress more than
one button at a time. Now the process is more or less on equal footing with its environment, and
will decide, according to a prescribed probability distribution, which button if any will go down. In
response to a successful outcome, this same probability distribution, conditioned by the process's
choice of button, will govern the internal state transition made by the process.

For example, consider the reactive process P and the generative process Q given by:

\a + \a.(a + b)+ b.c Q- ha + ha. (ha + ±b) + lb.c

P and Q have as semantics the probabilistic labeled transition systems depicted in Figure 1. For P,
an a- or 6-experiment will succeed with probability 1, whereas a c-experiment will fail. In the case
of an a-experiment, P will branch left with probability \ and right with probability §. Note that
no information is given about the relative probability of performing an a-action versus a 6-action
in P's initial state.

For the generative process Q, if the observer simultaneously attempts to depress the a and b
buttons, Q will unlock its a-button with probability § and its fe-button with probability |. In the
former case, Q will branch left with probability \ and right with probability f, which is precisely
P's reaction to an a-experiment. In fact, for any single-button experiment, P and Q behave the
same. Thus Q contains strictly more information than P, and, in a broader sense, the reactive
model is an abstraction of the generative model.

In this paper we also consider the stratified model of probabilistic processes, which captures the
branching structure of the purely probabilistic choices made by a process. For example, consider
an operating system in which there are n processes to be multiprogrammed. One of these is the
garbage collector which performs optimally if given one third of the CPU cycles. The other n - 1
processes are user processes and should equally share the remaining two thirds of the CPU. For the
case n = 3, a plausible specification of a scheduler for these processes would be

Sc = fixx{\a.X + \b.X + \c.X)

l
3 ^

>X^ 2

a
1 J>0~ i

\2

/x\ b] C

/x\

Figure 2: Stratified and generative transition systems of Sc'.

where the action a identifies the garbage collector, and b and c the user processes. But consider
the restriction context in which user c is denied further access to the machine. What would happen
to its share of the CPU? Because of the symmetry in the above specification, we would naturally
arrive at the expression

fixx{\a.X + \b.X)

Now, however, the garbage collector is granted one half of the CPU which is different from our
original intent. An exact specification of the scheduler can be obtained through the use of nested
expressions of probabilistic choice:

Sc' = fixx{\a.X + \{\b.X + \c.X))

which, in the stratified model, yields the leftmost probabilistic labeled transition system of Figure 2.
If user c were now denied access we would obtain

fixx{\a.X + lb.X)

as desired. Thus, in the stratified model, the intended relative frequencies are preserved in a
level-wise fashion in the presence of restriction.

Note that the probabilistic labeled transition system of Sc' in the generative model is simply
the right one of Figure 2. Thus, in the generative model, Sc is (unfortunately) equivalent to Sc'.
We shall see that, in a broader sense, the generative model is an abstraction of the stratified model,
in which the branching structure of probabilistic choices has been "flattened."

The extremal case of nested probabilistic choice in the stratified model, in which zero probabil-
ities are permitted, yields a general notion of process priority. For example, the expression

IP + 0(1Q + OR)

gives priority to process P over Q and R, and priority to Q over R. Thus process R can only be
executed in a restriction context that excludes P and Q. Zero probabilities are not considered in
this paper, but their role in modeling priority is examined carefully in [SS90].

Summary of Technical Results

We will be working within the framework of PCCS, a specification language for probabilistic pro-
cesses introduced in [GJS90]. PCCS is derived from Milner's SCCS [Mil83] by replacing the operator
of nondeterministic process summation with a probabilistic counterpart. Several PCCS expressions
have appeared above, which should give the flavor of the language.

For each of the three probabilistic models, and, for comparison purposes, the classical nonprob-

abilistic model, we present the following:
• a structural operational semantics of PCCS, given as a set of inference rules in the style

of Plotkin [PI08I] and Milner [Mil89]. For each model, these inference rules determine a
semantic mapping from the set of PCCS expressions to a particular domain of probabilistic
labeled transition systems. We denote these mappings as <pN, <pR, <pG, and <ps, respectively.
(As discussed in Section 4, the relabeling operator of PCCS is not compatible with the
reactive model, and also the combination of summation and unguarded recursion may be
problematic. Therefore, <pR applies only to a sublanguage PCCSß of PCCS in which relabeling

and unguarded recursion are excluded.)

. a notion of bisimulation semantics. In [LS91], Larsen and Skou introduced probabilistic bisim-
ulation, a natural and elegant extension of strong bisimulation [Par81, MU83] for reactive pro-
cesses. We likewise define probabilistic bisimulation on generative and stratified processes.

In each model, the largest bisimulation (under set inclusion), denoted ~, ~, ~, and ~, re-

spectively, determines the model's bisimulation semantics.

• We prove that £ is a congruence with respect to PCCS*, and ~, ~ and ~ are congruences

with respect to PCCS.

We then inter-relate the models, ultimately showing that they form a hierarchy: the generative
model is an abstraction of the stratified model, the reactive model is an abstraction of the generative
model, and the nonprobabilistic model is an abstraction of the reactive model. This reflects the
stepwise reduction of "observational power"; i.e. starting from the stratified model, we first abstract
from the probabilistic branching structure, then from the relative probabilities among different
actions, and finally from all probabilities. We proceed as follows:

• We add to the stratified, generative and reactive operational semantics inter-model abstraction
rules, which respectively allow the inference of generative probabilistic transitions from strat-
ified ones, reactive probabilistic transitions from generative ones, and nonprobabilistic tran-
sitions from reactive ones. These rules determine mappings between domains of probabilistic
labeled transition systems, which are denoted as ipSG, <PGR and tpRN, respectively. Similarly
we define "shortcuts" (pSR, <PGN and <pSN, and establish ipGN o (pSc = <PRN ° VSR = fSN,
<PRN o VGR = VGN and <pGR o <pSG = ipSR. The last result however only holds for strat-
ified transition systems specified by closed PCCS expressions in which each summation is
probability- and action-guarded. We refer to such expressions as summation-guarded PCCS

expressions.

• We obtain the following inter-model abstraction results.

For any two stratified transition systems G and H: G ~ H => VSG{G) ~ <PSG(H)

For any two generative transition systems G and H: G ~ H => V>GR(G) ~ <PGR(H)

For any two reactive transition systems G and H: G ~ H => VRN{G) ~ ¥RN(H)

For any two stratified transition systems G and H: G ~ H ==► IPSR{G) ~ <PSR(H)

Note that our last abstraction result holds for all stratified transition systems and is there-
fore not directly obtainable from the first two via the <pSR shortcut (which applies only to
summation-guarded stratified transition systems).

PCCS

Nonprobabilistic
Model

Nonprobabilistic
Bisimulation

VRN
Reactive
Model

Reactive
Bisimulation

fGR Generative
Model

Generative
Bisimulation

ipsG Stratified
Model

Stratified
Bisimulation

Figure 3: Interdependencies between the models.

For P a closed PCCS expression we prove the following commutativity results, which, in
addition to the abstraction results, establish the hierarchy among the models.

tpG{P) = VSG(<PS(P)) if P is summation-guarded or restriction-free
<pR{P) = <PGR(<PG{P)) if F is a summation-guarded PCCSß expression

<PR(P) = <PSR(VS(P)) if i3 is a PCCS* expression
<pN(P) = <PRN(<PR(P)) if P is a PCCSH expression
<pN(P) = <PSN{<PS(P)) = <PGN(VG{P))

In the presence of restriction and general summation the first commutativity result does not
hold. This is to be expected, as the stratified model is motivated by its different treatment
of restriction with respect to nested summations. Additionally, we show that the second
commutativity result does not hold in the presence of general summation. In fact, our coun-
terexample suggests that the reactive summation has a stratified flavor that is not present
in the generative case. This impression is supported by the third commutativity result, that
holds without restrictions on summation or restriction. It is not possible to define in a compo-
sitional way a more generatively flavored summation in the reactive model, that would allow
a generalization of the second commutativity result.

, We then show that the equivalence induced on the stratified (generative) model via abstrac-
tion to the generative (reactive) model is not a congruence with respect to PCCS. This
demonstrates the need for refining the bisimulation semantics when moving to a less abstract
model More precisely, we exhibit a pair of PCCS processes P, Q and a context C[] such that

<PSG (ips(P)) ~ <PSG{<PS{Q)) and <psa(<Ps{C[P])) $ <PSG{<PS{C[Q)))

Similarly for the generative-to-reactive and stratified-to-reactive abstractions.

On the other hand, the equivalence induced on the stratified model via abstraction to the
reactive model is a congruence with respect to PCCSß. Likewise, the equivalences induced
on the stratified and generative models via abstraction to the nonprobabilistic model are

congruences with respect to PCCS; and the equivalence induced on the reactive model via
abstraction to the nonprobabilistic model is a congruence with respect to PCCS#. These con-
gruence results can be seen as consequences of the fact that the corresponding commutativity

/? c *?
results hold without side conditions, and that ~, ~, and ~ are congruences.

The interdependencies between the different models are summarized in Figure 3. Here the upper
part reflects the commutativity results, the double arrows below reflect the abstraction results, and
the dashed arrows indicate the bisimulations that are induced on the stratified, generative, and re-
active models via abstraction to the generative, reactive, and nonprobabilistic models, respectively.

We conclude the paper with an interesting open problem concerning an equivalence relation ~
c s

(mixed bisimulation) that, in terms of its distinguishing strength, falls strictly between ~ and ~,

and is still a congruence in the stratified model. We conjecture that ~ is the largest congruence

contained in ~.

Related Work

This paper is an extended version of [vGSST90], which was written in cooperation with Chris Tofts.
The main contributions of the current paper and [vGSST90] are:

- The reactive operational semantics of summation-guarded PCCS# was first given in [vGSST90].
The reactive semantics of general summation, not present in [vGSST90], was developed in [LS92].
The generative operational semantics of PCCS stems from [GJS90].

- The stratified model and its operational and bisimulation semantics first appeared in [vGSST90].

- All congruence results and the interrelations between the various models were indicated, in part,
in [vGSST90]. Their detailed proofs are given here for the first time.

Pointers to earlier, mostly logic-oriented approaches to probabilistic processes (e.g. probabilis-
tic temporal and dynamic logic) can be found in [GJS90]. Recent work on probabilistic pro-
cess algebra includes [LS92] (in a reactive setting), [JS90, JL91, BBS92] (in a generative setting)
and [SS90, Tof90b] (in a stratified setting). All these papers consider probabilistic bisimulation,
except for [JS90], where also probabilistic versions of trace, failure and readiness equivalences
and congruences are studied. The interplay between time and probability has been investigated
in [HJ90, Low91].

Larsen and Skou [LS91] have examined the reactive model in the setting of testing. They
exhibit a testing algorithm that, with probability 1 — e, where e is arbitrarily small, can distinguish
processes that are not probabilistically bisimilar. Bloom and Meyer [BM89] further show that if
nondeterministic bounded-branching processes P and Q are bisimilar, then there is an assignment
of probabilities to the edges of P and Q, yielding reactive processes P' and Q' such that P' and Q'
are probabilistically bisimilar.

Christoff [Chr90] also considers the testing of probabilistic processes. He proposes three prob-
abilistic trace-based testing equivalences for generative processes using nondeterministic tests.
Cleaveland et al. [CSZ92] investigate the testing of generative processes as well (but with generative
tests); close connections to the classical testing theory of De Nicola and Hennessy are demonstrated.

Similar connections are made by Yi and Larsen in [YL92] for a model of probabilistic processes
based on [HJ90].

Jones and Plotkin [JP89] investigate a probabilistic powerdomain of evaluations, which they use
to give the semantics of a language with a probabilistic parallel construct. Finally, Seidel [Sei92]
uses conditional probability measures to give a semantics to a probabilistic extension of CSP.

2 Syntax of PCCS

As in SCCS, the atomic actions of PCCS form a multiplicative structure (Act, •) that is generated
freely from the set A of particulate actions. Unlike SCCS, where Act is an abelian monoid, we
assume neither commutativity nor associativity for action product (•). Thus all elements of Act are
of the form a or (a, ß), where a G A and a, ß € Act. One can think of the atomic action (a, ß) as
the simultaneous ordered occurrence of actions a and /?.

As discussed in Section 4, the free structure of our action algebra is necessary to be able to
define synchronous product in the reactive model. For any SCCS-like action monoid or group, the
corresponding synchronization merge can be expressed in our calculus by a combination of product
and relabeling. For example, the group structure of SCCS can be obtained through relabelings of
the form (a,a) H» 1 and (ö7,a) H-> 1, where 1 is the unit or idle action of SCCS. As a consequence
relabeling, which is a derived operator in SCCS in the sense that it can be expressed in terms of
the other operators, has to be introduced as a first-class operator in PCCS.

Let X be a variable, A a subset of Act, and / : Act -> Act. The syntax of PCCS is given by:

E::=0 \ X \ a.E \ E \pi]Ei where Pi G (0,1], £> = 1 | ExF \ E\A | E[f] | fixxE

Intuitively, 0 is the zero process having no transitions, while a.E performs action a with
probability 1 and then behaves like E. The expression Y,\Pi)Ei offers a probabilistic choice among
its constituent behaviors Ei. ExF represents synchronized product, and the restricted expression
E \A can perform actions only from the set A. Finally, E[f] specifies a relabeling of actions, and
fixxE defines a recursive process.

A PCCS expression is guarded if in its syntactic tree, every path from a recursion operator fixx

to an occurrence of the corresponding variable X passes through an action operator a.. In this paper
we require expressions to be restriction-guarded, a much weaker requirement that ensures that the
restriction operators in the generative and stratified models are well-defined. A PCCS expression
is restriction-guarded if in its syntactic tree, every path from a recursion operator fixx to an
occurrence of the corresponding variable X either passes through an action operator a., or doesn't
pass through a restriction operator. This excludes expressions like fixx(\a.X + \b.X + ^X l{a})
but permits non-guarded expressions like fixx(X[f] + (a.X) f{b}). We write E 6 PCCS to indicate
that E is a restriction-guarded PCCS expression. An expression having no free variables is called
a process, and Pr is the set of all restriction-guarded PCCS processes.

For this paper, all summation expressions are required to be finite. It will be convenient to
assume that all indices used in summation expressions come from a given set IQ not containing 0.
Also, we write the binary version of process summation as [p] E + [1 - p] F, assuming an index set
{1,2}, and often omit the square brackets around the probabilities.

Ej

a.E ► E

A E', jei =► E bi]^ -^ #
ie/

E ^ E', F -^ F' => ExF > E' x F'

£ _A £', aeA =» EN* -A E'U

E ^ E' =» £[/} —^-> #1/]

E{fixxE/X} A £' => fe£ A £'

Figure 4: Nonprobabilistic operational semantics of PCCS.

3 The Nonprobabilistic Model

We start with the nonprobabilistic model of PCCS based on Milner's model of SCCS [Mil83]. In
this model all probabilities are neglected and the only difference between PCCS and SCCS is the
different communication format. The reasons for including this section are to facilitate comparison
between the probabilistic models and the classical one, and to present some proofs pertaining to
classical bisimulation in such a way that they can be recycled in the probabilistic case.

3.1 Nonprobabilistic Operational Semantics of PCCS

The nonprobabilistic operational semantics of PCCS is given by the inference rules of Figure 4.
We write N h P -^ P' or just P -^ P' if P -^» P' can be derived from these rules. We refer
to p _?4 p> as a transition and its intuitive meaning is that P can perform action a to become
P'. The rules of Figure 4 induce a mapping <pN from Pr to a domain of nonprobabilistic labeled

transition systems.

Definition 1 A (nonprobabilistic) transition system is a triple (S, T,I) with

- S a set of states,

-TCSx Act x S a set of transitions,

- and I G S the initial state.

In a transition system all parts that are not reachable from the root as well as the identity of the
states are often considered irrelevant. Therefore an isomorphism between two transition systems
can be defined as a bijective relation between their reachable states, preserving transitions and the
initial state. Isomorphic transition systems are conceptually identified. Now ipN(P) for P € Pr
is defined to be the transition system (S,T,I) with S = Pr, I = P and T the set of transitions

{(P,a,P')\N\-P-^P'}.

Let GJV be the domain of transition systems (or process graphs). To extend the mapping
tpN : Pr -> GN to an interpretation of the open (restriction-guarded) PCCS expressions in GN,
let PCCS-Cjv be the language PCCS to which all transition systems G G GN have been added as
constants. We introduce an operational rule GAG, for each initial transition (I,a,s) in each
transition system G = (S,T,I). Here Gs denotes the transition system with the same states and
transitions as G, but with s as the initial state. Let tfN be the extension of <pN to closed PCCS-Gjv
expressions. Now let E be an open PCCS expression and f a valuation of the free variables of
E in GN. Then denoting by E* the result of substituting the constant £{X) for X in E, for all
occurrences of free variables X in E, allows us finally to define tpN(E)(£) = <p'N(E^).

Note that the extended ipN in particular defines an interpretation of the PCCS operators in

GN, thereby making GN into a PCCS-algebra.

3.2 Bisimulation

In this section we reformulate strong bisimulation [Mil83] as bisimulation in the nonprobabilistic
model, which we explicitly call nonprobabilistic bisimulation. A nonprobabilistic bisimulation will
be presented as an equivalence relation over Pr. For this purpose we need a predicate that indicates
whether or not from a given process it is possible to reach (a member of) a set of processes by
means of an a-step. Using V for the powerset operator we have:

Definition 2 The function HN ■ (Pr x Act x V{Pr)) —► {0,1} is given by: Vo; G Act, VP G

Pr, VS C Pr,
,n c,-l l if3QeSwithP-^Q »N(P, a, b) - j 0 Qtherwise

For an equivalence relation 11 over Pr, we write Pr/Tl to denote the set of equivalence classes
induced by 11, and [P]n to denote the equivalence class of which P is a member. Nonprobabilistic
bisimulation can now be defined as follows:

Definition 3 An equivalence relation KQPrxPr is a nonprobabilistic bisimulation if {P, Q) EK

implies: VS G Pr/1l, Va G Act,

HN{P, «, S) = I*N(Q,
a>s)

Two processes P,Q G Pr are nonprobabilistic bisimulation equivalent (written P ~ Q) if there
exists a nonprobabilistic bisimulation 11 such that (P,Q) G 11. Two open PCCS expressions
E,F G PCCS are nonprobabilistic bisimulation equivalent iff they are nonprobabilistic bisimulation
equivalent after any substitution of closed terms for their free variables.

This definition can easily be transformed into a definition of bisimulation on transition systems
(a bisimulation between two transition systems is a relation on the disjoint union of their states),

such that, for E,F G PCCS, E ~ F <^=> V valuations £, (ps{E)(0 ~ <pN{F)(0-

Proposition 1 If Hi {i G I) is a collection of bisimulations, then also their reflexive and transitive

closure (Ui Hi)* *s a bisimulation.

Proof: Since each of the relations Tli is symmetric, (Uj Ki)* is also symmetric, and hence an
equivalence relation. Now suppose (P,Q) G (Ui^-i)*- Then there are pj U = °> • • • >n) for certain

neW, such that P = P0, Q = Pn and (for j = l,...,n) (Pj-i,Pj) € ftfc for certain k E I.
Suppose 5 e Pr/(Ui^i)* and a € Act. Let 1 < j < n and (Pj-i,Pj) € 72*. Since S is the
union of a number of equivalence classes T e Pr/lZk and /JLN(PJ-I, a, T) = HN{PJ, a, ^) for any
T e Pr/llk, it follows that HN{PJ-U a, S) = HN{PJ, a, S). This is true for all j = 1,... ,n; thus
HN(P, a, S) = HN{Q, a, S). Hence {{Ji^iY is a bisimulation. D

Corollary 2 (Equivalence) Bisimulation equivalence is an equivalence relation on Pr.

Proof: Prom the definition of ~ it follows that on Pr we have

N (J { K | % is nonprobabilistic bisimulation }

Thus by Proposition 1, ~ is itself a bisimulation and hence an equivalence relation. □

It is not difficult to see that a nonprobabilistic bisimulation is just a strong bisimulation [Mil83,
MU89] that happens to be an equivalence relation. Since strong bisimulation equivalence, defined
as the union of all strong bisimulations, is an equivalence relation itself [Mil83, Mil89], this is
not a limiting restriction and nonprobabilistic bisimulation equivalence (being the union of all
nonprobabilistic bisimulations) coincides with strong bisimulation equivalence.

The following congruence theorem stems from Milner [Mil83, Mil89]. Our proof is a bit different
from Milner's because we insist that bisimulations should be equivalences and reason in terms of
the function fiN rather than using the underlying transitions. This pays off when we add the
probabilities.

In the proof of the theorem, we lift the PCCS operators to sets of expressions, which is done in
the natural way. For example, for S CPr, AC Act, S [A designates the set {P [A | P € 5}.

A PCCS context is defined as a PCCS expression that may contain a special constant Q,. If
C is a PCCS context and E a PCCS expression, then C[E] is the result of substituting E for all
occurrences of Q, in C, and ClE] (C lE]) is the result of substituting E for all occurrences of 0, in
C that are (not) in the scope of an operator fixx. Although we are only interested in contexts
with exactly one "hole", i.e. one occurrence of Q, it is technically advantageous (in the congruence
proofs) to also allow contexts without holes or with more than one hole. In C[E], though, all our
holes are instantiated with the same expression E. The set of all restriction-guarded PCCS contexts
is denoted PCCS[].

Theorem 3 (Congruence) For E,F E PCCS, C G PCCS[]: E ~ F implies C[E] ~ C[F]

Proof: The case of open PCCS expressions C[E], C[F] can be reduced to the closed case, by
considering C[E], C[F] under all possible substitutions. Note that for an expression C[E] any
variable in E is either bound within E, free in E but bound within C[E], or free even in C[E].
Due to the definition of bisimulation equivalence on open terms, we can eliminate from further
consideration variables of the last kind, as well as free variables occurring in C. Now, adopting the

10

Convention that "C G PCCS[]*" should be read as "C G PCCS[] such that C[E], C[F] G Pr
it is enough to show that the equivalence (i.e. reflexive, symmetric, and transitive) closure K of

n' = UC[E],C[F]) \ E~ F, C € PCCS[]*} is a bisimulation. This can be established by showing

that for all (P, Q)eK,Se Pr/K and a G Act,

HN{P, «, S) = MAT(Q, a, 5)

We may assume (P, Q) G K', because the extension to the equivalence closure is straightforward.

Thus we have to show that for all E,F € PCCS with E ~ F,

VC G PCCS[]*, VS G Pr/Tl, Va G Act, MAT(C[P], a, 5) = MW, a, S) (1)

We proceed by induction on the number of free variables in E and F. Let E, F G PCCS such that

E ~ P and suppose (1) is established for pairs £', P' G PCCS with fewer free variables. Then it is
enough to establish only one direction of (1), with < substituted for = as the converse direction,
>, follows by symmetry. Write N hn P -±> P' if the transition P -+P' can be derived by a
proof-tree of depth n or less, and define »n

N : {Pr x Act x P(Pr)) —► {0,1} by:

B,_ Qx fl if3QGSwithiVr-nP-^Q
/ijv^, a, ö; - | 0 otherwise

Now M^(P, a, 5) = lim/M^ a> 5)' so we only have to show that for a11 n ~ °'

VC G PCCS[]*, VS G Pr/1l, Va G Act, nn
N{C[E\, a, S) < HN(C[F], a, S) (2)

This will be done by induction to n.

The case n = 0 is trivial, so we may assume (2) for a certain n > 0. In proving (2) for n + 1
we distinguish seven cases, depending on the topmost operator (or lack thereof) of C. From here

onwards we drop the subscripts N.

Empty context: We have to show that for all S G Pr/1Z and a G Act,

Hn+x{E,a,S)<iJi{F,a,S) (3)

~ is contained in the equivalence relation 11. Thus S is the disjoint union of one or more
T G Pr/ ~, and it suffices to prove (3) for these T instead of S. This follows immediately

from E ~ P:
Hn+\E, a, T) < /x(P, a, T) = /x(P, a, T)

Note that at this point we cannot obtain (2) with the superscript n at both sides of the

inequality.

Action prefixing: We have to show that for all C G PCCS[]*, S G Pr/K and ß G Act,

Vn+1(a.C[E], ß, S) < ß(a.C[F], ß, S) (4)

f 1 if a = ß and E G S
For any E G PCCS, »n+1(a.E, ß, S) = ß(a.E, ß, S) = | Q otherwise

Thus, if a # ß requirement (4) is fulfilled trivially, and if a = ß it follows since C[E] and C[F]
are in the same equivalence class S' G Pr/K.

11

Summation: We have to show that for all Ct G PCCS[]*, S G Pr/11 and a G Act,

ßn+l(Z\Pi]Ci[E], a, S) < n(£\Pi]Ci[n <*, S) (5)
iei iei

Indeed, using LHS and RHS to denote the left- and right-hand sides of (5), we infer

induction

LHS = max(/in(£[£], a, S)) < max(n(d[F], a, S)) = RHS

Product: We have to show that for all Q G PCCS[]* (t = 1,2), S G Pr/Tl and 7 G Act,

ß
n+1(b[E} x C2[E], 7, S) < fi(b[F] x C2[F], 7, S) (6)

Since nn+1{b[E] x C2[£], 7, 5 - (Pr x Pr)) = 0, we may in (6) replace S by S D {Pr x Pr).
By the definition of 11 we have (Pi, P2) G 11A (Qi, Q2) e 11 =► (Px x Qi, P2 x Q2) G ^. Hence
5n (Pr x Pr) is the disjoint union of a collection of sets of the form S\ x 52 with S\, 52 G PrjH,
and it suffices to prove (6) for such sets Si x 52 instead of S n (Pr x Pr). Moreover we may
assume that 7 is of the form (a, /?), since otherwise (xn+l(Ci[E) x C2[P], 7, S) = 0 and we are
done. Thus we have to show that for all d G PCCS[]*, 5< G Pr/7e (i = 1,2) and a,ße Ad,

M"+1(Ci[£] x C2[E], (a,ß), Sl x 52) < /i(Ci[P] x C2[F], (a,ß), Si x 52)

induction

LHS = ßn(Ci[E], a, Si) ■ ßn(C2[E], ß, S2) < n(Ci[F], a, S{) ■ ß(C2[F], ß, S2) = RHS

Restriction: We have to show that for all C G PCCS[]*, A C Act, S G Prjll and a G Act,

ß
n+1(C[E] [A, a, S) < fi(C[F] [A, a, S) (7)

Since nn+l{C[E] \A, a, S - Pr [A) = 0, we may in (7) replace S by S n (Pr [A). By the
definition of 11 we have (Pi, P2) G ft => (Pi U, P2 U) G 11. Hence 5n (Pr [A) is the disjoint
union of a collection of sets of the form S' [A with 5' G PrjH, and it suffices to prove (7) for
such sets S' [A instead of Sn (Pr [A). Moreover we may assume that a e A, since otherwise
/zn+1(C[P] [A, a, S) = 0 and we are done. Thus we have to show that for all C G PCCS[]*,
A C Act, S' E Pr/11 and a € A,

pn+l(C[E] [A, a, S' \A) < fi(C[F] [A, a, S' I A)

induction

LHS = ßn(C[E], a, S') < n(C[F], a, S') = RHS

Relabeling: We have to show that for all C G PCCS[]*, / : Act -> Act, S G Pr/11 and ß G Act,

Hn+\C[E][f], ß, S) < ß(C[F}[f], ß, S) (8)

Since fj,n+l{C[E][f], ß, S-Pr[f]) = 0, we may in (8) replace S by Sf)Pr[f]. By the definition
of 11 we have (Pi,P2) G 11 => (Pi[/],P2[/D € 11. Hence S D Pr[f] is the disjoint union of a
collection of sets of the form S'[f] with S' G Pr/11, and it suffices to prove (8) for such sets

12

S'[f] instead of S n Pr[f). Thus we have to show that for all C G PCCS[]*, / : Act -> Act,

5' G Pr/Tl and /? € Act,

»n+1(C[E][f}, /?, S'l/l) < MOT/], ß, S'lf})

induction

LHS = max (ßn(C[E], a, S')) < max (ß(C[F], a, S')) = RHS
/(<*)=/? /(a)=/3

Recursion: We have to show that for all C G PCCS[] with fixxC G PCCS[]*, S G Pr/ft and

a G Act,

In case X does not occur free in E or F this follows since
induction

LHS = »n(C[E]{fixxC[E]/X}, a, S) = »n(C{fixxC/X}[E], a, S) <

fi(C{fixxC/X}[F], a, S) = ii{C[F){fixxC[F]IX}, a, 5) = RHS

In case X does occur free in E or F we have E{fixxC[F]/X} £ F{fixxC[F]/X} by Defini-
tion 3, and since these expressions have fewer free variables than E and F it follows that

ß(C{fixxC/X}[F)[E{fixxC[F}/X}], a, S) = ß(C{fixxC/X}[F}[F{fixxC[F]/X}}, a, S) (9)

induction

Hence LHS = ßn(C[E}{fixxC[E]/X}, a, S) = ^(CW^C/X^E}, a, S) <

(9)
rtC^ifixxC/XftF], a, S) = ti(C[F]{fixxC[F}/X}, a, S) = RHS

This argument is illustrated in Figure 5. D

4 The Reactive Model

The reactive model of probabilistic processes was introduced by Larsen and Skou in [LS91]. In this
section, we consider the reactive model within the context of PCCSß, the sublanguage of PCCS
with guarded recursion and without relabeling. We begin by presenting the reactive operational
semantics for PCCSÄ that defines a probabilistic transition system for every PCCSR process. We
then equip the model with a notion of probabilistic bisimulation, also due to Larsen and Skou, and
show that the resulting equivalence relation is a congruence with respect to PCCSÄ.

We restrict ourselves to guarded recursion in order to ensure that the reactive summation
operator is well-defined. That we do not give a reactive semantics to the relabeling operator is due
to an inherent incompatibility between this operation and the reactive viewpoint. For example,
consider process P = \a.X + \b.Y. P has a probability-1 a-transition to X and a probability-1
6-transition to Y. However, if the relabeling that maps a to itself and b to a is applied to P, then
we may end up with a "nonsensical" object having two probability-1 a-transitions. Some form of
relabeling could be defined in the reactive model if an appropriate normalization procedure were

13

Two terms E and F,
each with one free

occurrence of
a variable X

and a context C with
one free occurrence of X,

one hole in the scope
of an operator fixx

and one hole outside
such a scope

X-I L-XJ

C[£]fcC[£]/X}

= CW{ficxC/X}[E\

CW{fixxC/X}[F] =

C{fixxC/X}[F][E{fixxC[F]/X}}

Figure 5: The last steps in the congruence proof.

applied. Here three normalization procedures come to mind. Let Q = \a.X + ^a.X + $b.Y + ^c.Z
and again rename b into a. Now a "syntactic" normalization procedure would yield a probability-^
a-transition to Y. This is also the solution obtained by abstracting from the generative or stratified
model (i.e. by applying ipGR ° <PG or ipsR ° <ps), and from the counterexample in Section 7.1 it
follows that this solution is not compositional. An intermediate normalization procedure would
yield a probability-1 a-transition to Y (by counting the number of summands that can do an a-
step). But then Q and Q' = \a.X + \b.Y + \c.Z would behave differently after relabeling, and
bisimulation equivalence would not be a congruence. Finally a "semantic" normalization procedure
would give the a-transition to Y probability \ (by counting the number of actions that are renamed
into a), but here the disadvantage is that first renaming b in a and then c in a yields a different
outcome than doing this in the reverse order. Of course, injective relabelings can be added without
problem.

A solution to the problem of defining relabeling in the reactive model has recently been found

14

a[l]
a.E c—>o E

a\o] \-^ a\pj-q/r] „[.]

Ej ci^fc E> => E M ^ C ►** ^ Ü 6 /. r = 2 to I ft <^->, B"|)

£ cJ^ E>, F ^—>, F' =» F x F c >w) F' x F'

arpl a[p]
£? e^i E> => FU c—>i £' U (a e A)

a[p] "bl
E{fixxE/X} c—N £' =* jia;xF c—N £'

Figure 6: Reactive operational semantics of PCCSß.

by Larsen and Skou [personal communication]. They propose to equip a relabeling that renames
actions au...,an into a with a probability distribution that associates a probability pi to each
of the Oi's. These probabilities then determine the normalization factor. As such a probabilistic
relabeling is meaningless in the generative and stratified models, we will not consider this solution

in the present paper.

The same problems encountered in defining renaming in the reactive model apply to the SCCS
product, as relabeling can be expressed in terms of product and the other SCCS operators. For
this reason, we have "split" the SCCS product in the PCCS product and relabeling, only the latter
of which has to be sacrificed in the reactive model.

4.1 Reactive Operational Semantics of PCCSR

The reactive operational semantics of PCCSß is given in Figure 6 as a set of inference rules.
Reactive transitions are of the form

a\p]

P C_->i P'

meaning that P, with probability p, can perform an a-transition to become P'. The index i is

explained just below.

In the second rule, in which j, } denote multiset brackets, r is the normalization factor used to
compute the conditional probabilities of the sum under the assumption a. The rest of the rules are
straightforward adaptations of their nonprobabilistic counterparts.

Unlike in the nonprobabilistic case, all probabilistic transitions are indexed. The set IR of
reactive indices is the smallest set such that 0 € IR, j 6 Io,k G IR => j.k G IR, and i,j E
IR => (*) j) £ !R-

Tne purpose of the indices is to distinguish different occurrences of the same
probabilistic transition. They are constructed so that every outgoing probabilistic transition of an
expression has a unique index. (The indices will be used in the next section to define cumulative

15

probability distributions.) The following example is illustrative:

il o. n

([i]a. 0 + [I]a. 0) cü_L>li0 0 (ß]a. 0 + [±]a. 0) c_±+2 0 0

As in the nonprobabilistic case, the reactive operational rules collectively define the seman-
tic mapping ipR from PrR, the closed expressions of PCCSÄ, and even from the open PCCSß
expressions, to the domain of reactive probabilistic labeled transition systems.

Definition 4 A reactive (probabilistic) transition system is a triple (S,T,I) with

— S a set of states,

— T C S x Act x (0,1] x IR x S a set of transitions, such that

1. ((s,a,p,i,t) eTA{s,ß,q,i,r)£T)^{a = ßAp = qAt = r)

2. VsGS, VaeAct, £|p|3iG/Ä, teS: (s,a,p,i,t) G T} G {0,1}

— and I G S the initial state.

The first requirement of T says that all outgoing transitions of a given state have different
indices. The second one says that for each state the probabilities of the outgoing o;-transitions,
if there are any, sum up to 1, for any action a separately. An isomorphism between two reactive
transition systems is a bijective mapping / between their reachable states and transitions, satisfying
f(s,a,p,i,t) = (f(s),a,p,j,f{t)), where * and j may be different indices, and /(/) = /', where
I and /' are the initial states of the two systems. The mapping ipR is defined just as ipx in the
previous section. It is not difficult to see that (pR{P) meets the requirements for reactive transition
systems.

4.2 Reactive Bisimulation

We now consider reactive bisimulation, a notion of probabilistic bisimulation for reactive processes
due to Larsen and Skou [LS91]. By definition, all reactive bisimulations are equivalence relations.
Intuitively, two processes P,Q are probabilistically bisimilar in the reactive model if, for each action
symbol, they derive reactive bisimulation classes with equal cumulative probability.

To define reactive bisimulation, we first need to define the cumulative probability distribution
function (cPDF) which computes the total probability by which a process derives a set of processes.
Adopting the convention that the empty sum of probabilities is 0, we have:

Definition 5 (Reactive cPDF) pR: (PrR x Act x V{PrR)) —► [0,1] is the total function given
by: Va G Act, VP G PrR, VS C PrR,

HR{P,a,S) = Y, i Pi \P ^—* QandQe S\

16

Reactive bisimulation can now be defined as follows:

Definition 6 ([LS91]) An equivalence relation K Q PrR x PrR is a reactive bisimulation if

{P, Q)e1Z implies: VS G PrR/K, Va G Act,

HR{P,a,S)=i*R(Q,a,S)

Two processes P, Q are reactive bisimulation equivalent (written P £ Q) if there exists a reactive

bisimulation TZ such that (P, Q) G TZ.

By the same proof as was used for nonprobabilistic bisimulation, reactive bisimulation equiv-
alence can be shown to be an equivalence relation indeed. Furthermore, reactive bisimulation
equivalence is the largest reactive bisimulation and can be found by a straightforward adaptation
of the fixed-point iteration technique of [Mil89].

Like strong bisimulation does for SCCS or CCS, reactive bisimulation equivalence provides a
compositional semantics for PCCSÄ that is consistent with the operational semantics defined in

the last section. Specifically:

Theorem 4 (Congruence) For E,F G PCCSß, C G PCCSÄ[]: E ~ F implies C[E] ~ C[F]

Proof: Following the previous congruence proof, we define K as the equivalence closure of W =

{(C[E],C[F]) | E ~ F, C G PCCSß[]*}. The top of a context C G PCCSÄ[] is the part that
remains after first removing every subcontext of the form a.E and subsequently every subcontext
not containing SI. Now let PCCS^[] be the set of all PCCS« contexts with at most k nested
summation operators in their top. This time we have to show that for all E, F G PCCS« with

E&F, and for all k G N,

MC G PCCSk[]*, VS G PrR/Tl, Va G Act, fiR(C[E], a, S) = HR(C[F], a, S) (10)

This will be done by three nested inductions. First we apply induction on the number of free

variables in E and F and choose E,F G PCCSR with E ~ F for the induction step. Then we
apply induction on k and suppose (10) holds for k < I. Finally the proof of (10) for k = I continues

exactly like the one for ~ (i.e. with induction on the depth of derivations), substituting R for JV
and PCCS'ß[] for PCCS[], except that the function nR- (P^R X Act x V{PrR)) —> [0,1] is given
by: Va G Act, VP G PrR, VS C PrR,

Vn
R(P,a,S) =^2{pi\R\-nP £-^i Q and Q G S\

i€lR

and every time we invoke the induction hypothesis, we check that it is applied to contexts in
PCCSft[]* only (in the case of recursion this follows by guardedness of PCCSÄ expressions).
Moreover the case of relabeling is dropped—the congruence proof would break down where the
operation max is applied—and the last line in the case of summation is replaced by:

T^UH-MCiMcS) indU<i0n Z<,rPi-»R(Ci[F],a,S) = RHg

Ziel \Pi I VR(Ci[E), a, PrR) ± Ofr ~ Ziel {Pi I m(Ci[F], a, PrR) # 0| LHS =

Here (10) may be applied since d G PCCS^" D

17

tt[l]
a.E —>0 E

Ej^kE< =* Y.\p,]Ei^^,kE' (jel)
i€l

a\v\ ß\o\ <xß\p-q]
E -% &, F -% F> => ExF ü-^w) E'xF'

E -S* E' => E{A-^Ui EttA (a€A,r = vG(E,A))

£ —-I i E' => E[f] >i E'[f]

a\p) <*\p]
E{fixxE/X} —>i E' => fixxE —>i E'

Figure 7: Generative operational semantics of PCCS.

5 The Generative Model

In contrast to the reactive model, which is defined only over the sublanguage PCCSÄ of PCCS,
the generative model is defined over full PCCS. In this section, we provide PCCS with a generative
operational semantics. We then extend the notion of reactive bisimulation to the generative case
and show that the resulting equivalence is a congruence with respect to PCCS.

5.1 Generative Operational Semantics of PCCS

The generative operational semantics of PCCS is given in Figure 7. We use a different kind
of arrow (non-hooked) to distinguish generative transitions from reactive ones. As in the reactive
case, generative transitions are indexed to distinguish multiple occurrences of the same probabilistic
transition. The set IQ of generative indices is equal to IR.

With the exception of restriction, all rules are straightforward adaptations of their nonproba-
bilistic counterparts. The restriction rule defines the probabilistic transitions of E [A in terms of the
conditional probabilities of E under the assumption A. In this rule, the function vG computes the
generative normalization factor such that VQ{E, A) is the sum of the probabilities of the transitions
of E labeled by symbols from A. The formal definition of vG is given by

vG(E,A) = Y, $Pi I E ^-+i Ei, a£Al
iela

Note that under the assumptions E >, E' and a € A, vG{E, A) > 0. As we consider restriction-
guarded recursion only, it will follow from the proof of Theorem 5 that vG is well-defined.

To illustrate the generative operational semantics, consider the expression

E = (a.0)x ([!]&.X + [|]c.y + [i]0)

18

We have:

(«,ö)[i] («,c)[|]
J5 >(0,i.o) OxX E ►(o,2.o) 0xy

As vG(E,{(a,b)}) = I, we also have:

E [{(a, b)} -^-U(0A_0) (0 x X) [{{a, b)}

A generative process is said to be stochastic if the sum of the probabilities of its derivations
is 1. Otherwise, when this sum is strictly less than 1, the process is said to be substochastic, and
therefore possesses a non-zero probability of deadlock. PCCS expressions (contexts) without 0,
unguarded recursion and restriction preserve stochasticity: if stochastic processes are substituted
for their free variables, then the obtained processes are stochastic as well. In the case of restriction,
the obtained process may have no derivations at all.

The normalization factor uG{E,A) used in the restriction rule of Figure 7 is such that a sub-
stochastic process placed in a restriction context becomes stochastic or deadlocks completely. Al-
ternatively, the relative probability of deadlock in a substochastic process can be preserved by
normalizing by the quantity r = uG(E,A) + l- uG(E,Act). The term 1 - uG(E,Act) repre-
sents the probability of deadlock in E. To illustrate, we would have in the above example that
uG(E,Act) = §, r = §, and thus:

(a,b)[h]
E {{(a, b)} ►(o.i.o) (0 x X) [{(a, b)}

In fact, deadlock preserving and eliminating restriction operators can be combined in one language
by introducing an operator [A for A C Act U {0}. From here on all results apply to this extended
language. In Figure 7 the generative normalization factor is now extended by

uG(E, AU0) = vG{E, A) + 1 - uG{E, Act)

for A C Act. In the reactive and nonprobabilistic models \{A U 0) is defined exactly as \A.

A generative process is called semistochastic if the sum of the probabilities of its derivations is 0
or 1. PCCS expressions (contexts) without summation preserve semistochasticity, but a summation
context, or an unguarded recursion context with summation, may introduce non-semistochastic
behavior. Each of the expressions

ia.0 + i0 and fixx(l(X[(a,b) -► a] x X[(a,b) -»■ b]) + \(a,b).X)

for instance has a deadlock probability of \. PCCS may be turned into a semistochastic language
by replacing the summation operator by a semistochastic variant, which can be expressed in our

language as (H \pi\Ei) [Act (using our deadlock eliminating restriction operator), and adapting
i€l

the definition of restriction-guardedness. In this language there will be no difference between the
deadlock preserving and deadlock eliminating restriction operator, and [p] X + [1 - p] 0 = X.

19

A generative transition system is defined as a reactive transition system, except that the second
requirement of T is changed into

VseS, J2$p\3aeAct, ielG,teS: (s,a,p,i,t) eT}<l

Also, the semantic mapping <pG from PCCS to the domain of generative transition systems is
defined exactly as <PN and </>#.

5.2 Generative Bisimulation

The extension of reactive bisimulation to the generative model is straightforward. The definition of
the generative cPDF \iG is the same as Definition 5 except that it is defined over Pr and in terms

of indexed generative transitions. Likewise, the definition of a generative bisimulation and of ~ are
the same as in Definition 6, except that they are defined over Pr and in terms of /zG. Similar to

the reactive case, ~ is substitutive in PCCS.

Theorem 5 (Congruence) For E,F G PCCS, C G PCCS[]; E £ F implies C[E] ~ C[F]

Proof: We follow the reactive congruence proof, but this time with PCCSfc[] the set of PCCS
contexts with at most k nested restriction operators in their top, until we have to show, for A; € IN,

VC € PCCSfc[]*, VS € Pr/n, Va G Act, HG(C[E], a, S) = HG(C[F], a, S) (11)

Again, this will be done by induction on k. Suppose (11) holds for k < I. It then follows that

VA: < l, MC € PCCSfc[]*, VA C Act Ü {0}, vG[C[E\, A) = vG(C[F],A) (12)

because (restricting w.l.o.g. to the case A C Act)

vG{P,A)= Y. I*G(P,<*,S)

SePr/K.

Now the proof of (11) for k = I continues just like the one for ~, defining /xG similar to n% and
substituting PCCS'f] for PCCS[], except that the occurrences of max in the cases of summation
and relabeling are replaced by Y, (in tne case of summation followed by p^), and every time we
invoke the induction hypothesis, we check that it is applied to contexts in PCCS'[]* only (in the
case of recursion this follows by restriction-guardedness of PCCS expressions). Moreover the last
line in the case of restriction is replaced by:

____ ßn(C[E], a, S>) induf °n MCtn «, S>) _
LHS= u(C[E],A) {f2) v(C[F],A) -RHS

Here (12) may be applied since C G PCCS' J-1M* D

20

£]pi]Ei A, Ej (jeI)
iei

E vJL,i E', F ^j F' =» ExF £^{iJ) E' x F'

E ^ E',F -A F' =» F x F ^(ii0) E'xF

£ _^ £', F A F' =» F x F -^(0,0 £ x F

plus{E,A)
E ^, F', F A =» EU i)i F'U

E ^ E' => E[f] -^ E'[f)

E{fixxE/X} ^i F' =*> feF A* F'

Figure 8: Stratified operational semantics of PCCS.

6 The Stratified Model

The treatments of'the nonprobabilistic, reactive and generative models are extended here to the

stratified case.

6.1 Stratified Operational Semantics of PCCS

The stratified operational semantics of PCCS is comprised of two types of transition relations:
action transitions (as in the nonprobabilistic model) and probability transitions. Action transitions

are of the form P -A Q. Probability transitions are of the form P ^ Q, meaning that P, with
probability p, can behave as the process Q. Here i is an index from the set IS = I^- {0}, where Is

is the smallest set such that 0 6 ig, i0 C I°s and ij E I°s => (i,j) € I°s. This separation of action
and probability in the stratified model permits the branching structure of the purely probabilistic
choices to be captured explicitly. The inference rules for probability transitions appear in Figure 8;
the rules for action transitions are the same as in the nonprobabilistic case, except that there is no
rule for process summation, since in the stratified model the only choice mechanism is probabilistic.
Only the probability transitions need to be indexed. This bi-structured approach to operational
semantics was (to our knowledge) first presented in [Tof90a] to give a semantics for a timed version
of CCS. Note that no PCCS expression admits both action and probability transitions. Thus the
set of PCCS processes is partitioned into action processes (admitting action transitions), probability
processes (admitting probability transitions), and deadlock processes (admitting neither).

Except for the rules for product and restriction, all of the inferences rules for probability transi-
tions are straightforward adaptations of their nonprobabilistic counterparts. The third and fourth
rules say that the product of an action process and a probability process is a probability process.
They are needed to avoid deadlock in a synchronous product that is caused by a difference in depth
of the purely probabilistic branching structures of the argument processes. For example, we do not
want (^ a.O + \ 6.0) x c.O to deadlock simply because there does not exist a probability transition

in the right hand argument.

21

As in the generative operational semantics, the restriction rule expresses the probability tran-
sitions of E [A in terms of the conditional probabilities of E under the assumption A. Intuitively,
E \A behaves like E, where all probability transitions to subexpressions that necessarily require the
execution of a restricted action are eliminated. The probabilities associated with these transition
are evenly distributed among the remaining probability transitions.

The predicate A for A C Act is defined by E A if E = E0 A^ E1 ^2 • • • ^in En -% E'
• Aü{O) A ^

C
*

for certain n G N and a G A. It is extended to A C Act U {0} by E -V iff (E —> VE-f+).

Thus the condition E' -A- in the rule premise requires that derivative E' of E is capable of
performing an action transition from the set A of permitted actions (or, in case 0 G A, deadlocks).
The function v$ calculates the stratified normalization factor and is defined by

ME, A) = 52 \Pi I E Ai Ei , Ei -A }
ieis

As in the generative case, it will follow from the proof of Theorem 6 that —> and us are well-defined.

To illustrate the inference rule for restriction, consider the process

P = Ia.O + | (| 6.0 + |c.0)

In the following, P is placed in some relevant restriction contexts, resulting in the restriction-free
processes on the right-hand side.

Pl{b,c} = 1(|6.0 + \c.O)
P\{a,c\ = ia.O + |lc.O
P \{c} = 1(1 c.O)

Here = denotes isomorphism of the associated labeled transition systems.

The inference rules for action and probability transitions define the semantic mapping ips from
PCCS to the domain of stratified probabilistic labeled transition systems. Such transition systems
have action states, having exactly one outgoing action transition, probability states, having only
outgoing probability transitions, all with a different index, and deadlock states, having no outgoing
transitions. Stratified transition systems are semistochastic in the sense that for each probability
state the sum of the probabilities of its outgoing transitions is 1. A state with a sequence of
probability transition to a deadlocked state corresponds to a substochastic state in the generative
model.

6.2 Stratified Bisimulation

Stratified bisimulation is similar to reactive and generative bisimulation in that processes are re-
quired to derive stratified bisimulation equivalence classes with equal cumulative probability. How-
ever, the separation of probability and action in the stratified operational semantics is reflected in
the definition of stratified bisimulation.

To define stratified bisimulation, we need to: (1) define a function that computes the total
probability by which a process can behave the same as any process in a set of processes (the

22

technique is analogous to the one in Definition 5, and thus the details are omitted); (2) lift, as in
Definition 2, the action relations to sets of derivative processes. The stratified cumulative PDF /i5

incorporates both (1) and (2) in an integrated fashion. In particular, fis is of the form

Ms : (Pr x (Act U { * }) x T(Pr)) —> [0,1]

where * is a dummy symbol used to mark probability transitions. That is, for aE Act, ns(P a, S) G
{01} indicates whether or not P has an a-transition to some process in 5. Otherwise, /zs(P, *, S) G
[0,1] specifies the total probability by which P may behave the same as any process in S.

Definition 7 An equivalence relation 11 C Pr x Pr is a stratified bisimulation if (P,Q) G K

implies MS G Pr/H, Va € Act U {*},

fis{P,<x,S)=ns{Q,a,S)

Two processes P, Q are stratified bisimulation equivalent (written P ~ Q) if there exists a stratified

bisimulation H such that (P, Q) G H.

Theorem 6 (Congruence) For E,F € PCCS, C 6 PCCS[]: E^F implies C[E] £ C[F)

Proof: By induction on k (as in the generative case) we establish

VC G PCCSfc[]*, VS G Pr/11, Va G Act U {*}, f*s(C[E\, a, S) = fis(C[F], a, S) (13)

where 11 is defined as usual. Suppose (13) holds for k < I. It then follows that

Vfc < /, VC G PCCSfc[]*, \/A C Act Ü {0}, C[E] -A iff C[F] -A (14)

As a consequence we may write S -A for 5 G Pr/ft when P -A for an arbitrary representative

P £ S. Now, if C[£7] is not an action process,

us(C[E\,A)= £ ns(C[E], *, 5)

and therefore

Vfc < Z, VC G PCCSfe[]*, MA C 4ci Ü {0}, i/s(<W A) = ^(C[P],>1) (15)

The proof of (13) for k = I is split into two cases. The case of an action transition a G Act

proceeds as the congruence proof for ~, except that we check that the induction hypotheses applied
to contexts in PCCS'[] only, and in the case of summation we conclude with LHS = 0 = RHS.

The case of a probability transition a = * also follows the proof for ~, defining /i§ similar to

/i£, but with the following modifications.

23

Action prefixing: The proof of (4) (with ß — *) trivializes as /in+1 (a. C[E], *, S) = 0.

Summation: The proof of (5) is replaced by

Mn+1(EbM£], *, s) = J>* | d[E] £S\ = ^{pi\ Ci[F] esi = n(£\jH]Ci[n *, S)
iel iel »€J i€l

since, for i G I, Ci[E] and Ci[F] are in the same equivalence class S' G Pr/U.

Product: The proof of (6) (with 7 = *) is unchanged until "Moreover". Then we have to show
that for all & G PCCS'[]* and Si G PrjTl (i = 1,2),

M"+1(Ci[£] x C2[E], *, Si x S2) < KCi[F] x C2[F], *, Sx x S2) (16)

For this we distinguish 4 cases, depending on whether or not C\[E] and C2[E] are probability
processes. If neither of them are, (16) follows since LHS=0. If both of them are, we have

induction

LHS = /i"(Ci[£], *, Si) ■ nn(Ci[E\, *, S2) < ii(h[F], *, Sx) ■ v(C2[F], *, S2) = RHS

And if just one of them (say C\[E\) is a probability process, (16) follows since

induction

LES = fi
n(Ci[E],*,S1)-

J£ Vn(C2[E],ß,S2) < /i(Ci[Jl,*,5i)-j; »(C2[F],ß,S2) = RHS
ßeAct ßeAct

Restriction: The proof of (7) is unchanged until "Moreover". Then we have to show that for all
C G PCCS'[]*, A C Act U {0} and S' G Pr/U,

»n+1(C[E] [A, *, S' [A) < fi{C[F] I A, *, 5' [A) (17)

Now the proof of (17) proceeds with a case distinction. In case S' —/-> we have LHS=0=RHS.
A

In case S >■ it concludes as in the generative case.

Relabeling: This case (with ß = *) concludes with

induction

LHS = fin(C[E], *, S') < fi(C[F], *, 5') = RHS D

7 Interrelating the Models

In this section we establish the results announced in the introduction, showing that the models
discussed before form a hierarchy. We start with investigating the abstraction from the generative
to the reactive model in Section 7.1, followed by an analogous treatment of the more intricate
abstraction from the stratified to the generative model in Section 7.2. Subsequently, we give a
direct abstraction from the stratified to the reactive model in Section 7.3. Finally, we briefly sketch
the simpler abstraction steps leading from probabilistic to nonprobabilistic models.

24

7.1 The Generative to Reactive Abstraction

Let E, E' be PCCS expressions. The inter-model abstraction rule IMARGR is defined by

E -^ i E' =» E c ► i E'

This rule uses the generative normalization function to convert generative probabilities to reactive
ones, thereby abstracting away from the relative probabilities between different actions. We can
now define VGR{VG(P)) as the reactive transition system that can be inferred from P's generative
transition system via IMARGÄ. By the same procedure as described at the end of Section 3.1, <pGR

can be extended to a mapping <pGR '■ ©G -> ®R-

Write PG~Q if P,Q E Pr are reactive bisimulation equivalent with respect to the transitions
derivable from G + IMARGß, i.e. the theory obtained by adding IMARGß to the rules of Figure 7.

The equivalence G£ is defined just like £ but using the cPDF ßGR instead of HR- HGR is defined

by °M
liGR(P,<x,S)= £ {Pi\G + IMARGR\-P c_* QzndQeSj

ieiR(=ia)

Theorem 7 (Abstraction) Let G,H G GG. Then G ~ H =► ¥>GR(G) ~ <PGR(H).

Proof: We prove this theorem for the case that G and H are of the form <pG(P) and tpG(Q) with

P,Q EPr and use that </?G(P) ~ <^G(0) ^ P ~ Q and <PGR{<PG{P)) ~ <PGR(<PG{Q)) <* P ~ Q.
The proof of the general case is not essentially different, but would involve defining the reactive
and generative bisimulation equivalences formally on transition systems.

Let U be a generative bisimulation on Pr. We prove that 11 is also a reactive bisimulation on
Pr with respect to the transitions derivable from G + IMARGß. So let (P, Q) eK,Se Pr/K and

a G Act. Then

i/G(P,{a})= Y, HG{P,<*,S)= £ HG(Q, <*, S) = VG(P, {<*}), so

5€Pr/7?. SGPr/7?.

,„ c^ na(P,a,S) _ LiG(Q,a,S) _ , ~
»GR{P^S)= vG{pM}) - MQ{a}) -VGR(Q,a,S)

We will now investigate to what extent ipGR commutes with the semantic mappings <pG and <pR.
This turns out to be the case for PCCSR processes in which all summations are of the form

XI \pi\OLi.Ei. We say that such an expression is summation-guarded,
iei

Lemma 1 (Soundness and Completeness of IMARGÄ) ForE,E' summation-guarded P'CCSR

expressions, a G Act, p G (0,1] and i G IR,

a\p] °\P\
R\-E c—H E' <=» G + IMARGR h E c—H E'

25

Proof: As in the congruence proofs, we use induction on the depth of derivation trees, and write
a\p] a\p]

R\-nE c—H E' if the transition E c—H E' can be derived by a proof-tree of depth n. In the
similar definition of G + IMARGß Hn we don't count the single application of IMARGä though.
We distinguish several cases, depending on the topmost operator of E. The case of action prefixing
is trivial.

\pi] ai. Ei c—■ >j Ej
16/

jEl and q = Pj I J2 Pk = Pj / UG(Z2 [pi] OJJ .£*, {ay}) iff - -
'kel, ak-otj
Ecj[q]

\pi]ai.Ei c >j Ej.
iei

(a,ß)[r]
Product: R K+i ExF c >{iJ) E' x F'

a[p] fill]
iff R \-n E c H E\ F c >j F' and p ■ q = r

a\p] ß[g]
iff G + IMARGä \-n E

c H E, F c >j F' and p-q = r (by induction)

iff G\-nE >t E', F >j F' and p-q = r
(a. ß\\r-s\

iff G hn+1 ExF) {iij) E'xF' and s = vG(E,{a})-uG{F,{ß}) = uG(E x F, {(a, ß)})
(«>/3)W

iff G + IMARGÄ hn+1 ExF c >{iJ) E'xF'.

Restriction: R \-n+1 E [A c H E' \A
a\p]

iff R \-n E
c H E' and a E A

a\p]
iff G + IMARGä r-„ E c H E' and a £ A (by induction)

a\p-va{E,{a})]
iff G\-nE >i E' and a€A

iff Ghn-xSM-^U #U where r = *&$$ = vG{E U, {a})

iff G + IMARGä Hn+1 E U c H E' [A.

a\p]

Recursion: R \~n+i fi^xE c H E
a\p]

iff R \-n E{fixxE/X} c h E'
a\p]

iff G + IMARGä Hn E{fixxE/X} c ^ £' (by induction)

iff G hn E{fixxE/X} ab"T u E' where r = t/G(E{fixxE/X}, {a}) = vG($xxE, {a})
a\p-vG{fixxE,{ot})]

iff G hn+1 ./«*£ ► i E'
a\p]

iff G + IMARGä r-„+i fixxE c >< £'. D

As an immediate consequence of Lemma 1 we have:

26

Theorem 8 (Commutativity) LetPePrR be summation-guarded. ThernpGR{VG{P)) = <PR{P)-

C1 R
Corollary 9 Let P,Q E PrR be summation-guarded. Then P ~ Q =>• P ~ Q.

Proof: Theorem 7 says that P £ Q => P G~ Q for P,Q € Pr. Theorem 8 (or Lemma 1) implies
D CR

HR{P,a,S) = HGR{P,a,S) and hence P ~ Q ■& P ~ Q for summation-guarded P,Q G Pr^. □

Theorem 8 does not hold in the presence of general summation. Consider the process

P= \a.X + l{\a.Y + ±b.Z)

In ipGRiVGiP)) the probabilities of a.X and a.Y are equal, while in <PR{P) executing a.Y is twice
as likely as a.X. This counterexample can be easily extended so to apply to Corollary 9 as well.
One may wonder whether relabeling could be added to, or summation redefined on the reactive
model such that reactive bisimulation remains a congruence, but Theorem 8 can be extended. This

c* R
is not possible as it would imply that ~ is a congruence, which will be refuted below.

/in

The equivalence ~ (which was previously defined only on closed PCCS expressions) can be
(~* R R

extended to arbitrary generative labeled transition systems by G ~ H ■& <PGR(G) ~ <paR{H),
/~ij> CR

and P ~ Q <3- V>G(P) ~ <PG(Q)- We show that this equivalence is not a congruence, thus
demonstrating the need for refining the bisimulation semantics when moving from the reactive to
the generative model. Consider the PCCS processes

P = |a.O + §6.c.O Q = \a.Q + \b.c.Q

For P,Q we have P ~ Q, i.e.
R

<PGR{<PG{P)) ~ <PGR(<PG(Q))

However, the same is not true for C[P] and C[Q], where C is the relabeling [a -> a,b -y a,c -» c].
In particular, nGR(C[P],a, [c.0]R) = I and pGR(C[Q],a, [c.0]R) = L

A similar counterexample is obtained by placing P and Q in the summation context C =
\[] + ±6.0. In this case ßGR(C[P],b,[c.0]n) = § and fiGR(C[Q],b, [c.0]*) = §•

7.2 The Stratified to Generative Abstraction

Let E, E' be PCCS expressions. Then IMARSG is given by

a , a[l]
E—► E' =*• E —>0 E'

£/ I >i Hi r j XL/ =?■ £/ rjj Hi

where i.j (as in the generative case) denotes the concatenation of two indices. Thus the elements
of ISG, the set of indices generated by £ +IMAR^G> are sequences, and we let \i\ denote the length
of such a sequence.

27

Write P S£ Q if P Q € Pr are generative bisimulation equivalent with respect to the transitions

derivable from G + IMAR5G. The equivalence S~G is defined just like ~, but using the cPDF ,SG

instead of /xG. HSG is defined by

MsG(P,a,S) = £ I^IG + IMARSGHP ^4, Q and Q G Sfr

Theorem 10 (Abstraction) Lei G,fi£ Gs. TAen G £ H => </>sG(G) £ </>SG(#).

Proof: As before, we prove this theorem for^the case that G and ff are of the form <ps{P) and

(ps(Q). Thus we show that for P, Q G Pr, P ~ Q =» P ~ Q-

We now define

^G(P,<*,S) = £ ^|S + IMARSGhP *; Q, Q G 5 and |i| = n\

ieisG

Let tt be a stratified bisimulation on Pr. We prove that* is also a.generativebi^tum on Pr
with respect to the transitions derivable from S + IMARSG, i.e. that for (P,Q) G 71, S G Pr/tt

and a G Act,
/iSG(P,a,S)=/isG(Q,a5S)

As MSG(P, a, 5) = En^ ^G(*«, 5), it ^es to prove this for every „Sc, which we will do by

induction on n. 1 „.
Vl

SG(P, a, S) = MS(P a, S) = ßs(Q, a, 5) = MsG(Q,«>5)

^«,5) = E |M|S+IMARSGhPA,A^^^^-d^^ MsG

= £ //s(P*,W)-^G(^«.S)
ßePr independent of choice of R G [i?]-R.

= £ Ms(P*,[Äk)-MsG(^a^)
[Ä]wePr/TC

[R]TC€Pr/^

IMARSG has the effect of "flattening" trees of probability transitions with action transitions at
the favesTnto a single-level structure of generative transitions. Indeed, we show that the generative

"ansTtion system «fa restriction-free PCCS process P is isomorphic ^^^^
system that can be inferred from P's stratified transition system via IMARSG. For example, let

p = ia.o + |(|6.0 + £c.0). Then, by IMAR5G 3l

P^ILOO P ^ 2.1.0 0 P -^ 2.2.0 0
Mil . _ c&

Except for the transition indices, these are precisely the transitions of P in the generative model.

28

Lemma 2 (Soundness and Completeness of IMARSG) There is a surjection f : IG -» ISG

such that for E, E' restriction-free PCCS expressions, a G Act, p G (0,1] and i G IG,

a\v\ Q
[P]

GVE J^fi E' «=* S + IMARSG^E —>m E'

Moreover G \-E -Sj F, £ —+J E", i ? j =* /(») # /CO-

Proof: In Lemma 1 / happened to be the identity function and was therefore not mentioned.
Unfortunately, / can not be chosen bijective this time. In order to get rid of this complication in
an early stage, we split the proof in two parts by considering an intermediate operational semantics
G'. The inference rules of G" are exactly the same as the ones of G, except that in the rule for
product when i and j are both 0 the resulting index is also 0 instead of (0,0). Let /' : IG -> la be
the function that exhaustively replaces all occurrences of (0,0) in an index by 0. Then

afp] , abl ,_,,
G\-E -^ii E' <=» G'\rE —>/<(i) E'

Now let G h E ^5 i E', E -5,- E" and f'(i) = f'(j). If E is summation-free, it has only
one outgoing transition and therefore % = j. Otherwise t = j is established by a straightforward
induction on the length of derivations. We refer to this property of /' as "limited injectivity" since
/' is injective only with respect to the transition indices of a given E.

The second part of the proof consist of establishing Lemma 2 with G' instead of G and
f : iG, _>. iSG. This function can be chosen bijective.

Recall that /g = JsU {0} and let jgG be the largest set of sequences over I°s such that an index
(i,j) can only be followed by either 0 or an index (k,l) such that i.kj.l G I°SG, and an index 0 can
only be followed by an index 0. Then ISG = I°SG n (Js)*0. This follows from the fact that product
is a static operator, i.e. the syntactic subtree of occurrences of product in a PCCS expression is
preserved under stratified derivations. Define head : IG> -> i§, tail : la -> la and the partial
function • : Jg x IG> ->■ IG< by

head(0)=0 tail(0)=0 0.0 = 0
head(i.j)=i tail(i.j)=j fj=t.j (t G I0)

,/• ^ /, ^-M, ^ + -ir ^ J(*«J(*),*a«(j))if#(0,0) (i,i).(fe,/) = (i.fc,j.O
head(i,j) = (head{i),head{j)) tail{i,j) = <Q otherwise (i,j) »0 = (t»0,j • 0)

With structural induction on j for "=$►" and on i for "«=" it follows that

i= j 9 k O j = head(i) A k = £aiZ(z) (18)

Moreover, if i ^ 0, /»ea(f(i) G Is and toiZ(t) is a shorter index than i. Define / : IG> -> ^SG by

. _ J 0 if t = 0
•^ = 1 head{i).f(tail(i)) otherwise

and g : IsG ~> -fc' by
g{io- ■ ■ ■ -in) = (*0 • (■ • • (*n-l • in) ■ • '))

29

Note that / transforms pairs of sequences into sequences of pairs. Clearly f(i) e ISG for i E Ic and
g(i) E IG> for i € ISG- Further g is the inverse of / by (18), and hence / is bijective. The bijectivity
of / together with the limited injectivity of /' establishes the "moreover" part of the lemma.

We now proceed to prove
a\p] a\p]

G'yE-^iE'^S + IMARSG \-E —► m E'

by structural induction on i. In case i = 0 (the induction base) E must be summation-free and there
is almost no difference between the generative and stratified (=nonprobabilistic) inference rules,
and the statement holds. In case i^Owe again use induction on the depth of derivation trees,
albeit modified ones. Here the modification of a G' derivation tree consists of removing all ancestors
of transitions from summation expressions, and the modification of an S +IMARSG derivation tree
consists of erasing any subtree ending with a clause that is used as the second argument in an
application of IMARSG- Moreover, the remaining application of IMARSG doesn't count. We now
use the notation hn to refer to the depth of modified derivations, and prove

afp] a\p]
G'\-nE —>i E' ^=> S + IMARSGK^ —>f(i) E'

by induction on n. We distinguish several cases, depending on the topmost operator of E. Asi^O
this operator cannot be action prefixing.

Ea[p] a[q]
\pi] Ei >j.k E' iff G' h Ej >k E' and p = pj ■ q

iei
ot[q]

iff S + IMARSG I- Ej >■/(*) E' and p = pj ■ q (by induction (k < j.k))

Ea\p] v^ Pj
\pi\Ei >f{j_k) E' (since S hi 2^]pi]Ei i >j Ej).

iei i€l

(a,ß)[r]
Product: In case i^O^j: G' hn+1 ExF >{iJ) E" x F"

iff G' \-n E h E", F >j F" and p-q = r
a\p] ß[q]

iff S + IMARSG U E ^/W E", F >f{j) F" and p-q = r (by induction)

Pi 91
iff S hn E I >head(i) E', F I >head{j) F)

"b2] ßlii]
S + IMARSG H E' —► f{taü{i)) E", F' —> f(taii(j)) F" and Pl -p2 ■ qx ■ q-i = r

pi 91
iff S hn E I >head{i) E', F I >head(j) F ,

a[p2] /3[92]
G'Y-E' > tail® E\ F' —> taii(j) F" and Pl ■ p2 ■ qi ■ q2 = r (by induction)

iff S hn+i ExF I >(head(i),head(j)) E X F ,
(a,ß)[r2]

G'hE'x F' >tail{itj) E" x F" and rx-r2 = r

iff 5 Hn+1 ExF I >head(i,j) E' x F',
(a /3)[r2]

S + IMARSG \-E' X F' —■ >f{taü{i,j)) E" x F" and rx-r2 = r (by induction)
{a,ß)[r\

iff S + IMARSG U+I ExF >f{iJ) E" x F".

30

In case i ^ 0 = j: G' \~n+i ExF >{i,0) E" x F"
a[r] ß[l]

iff G' Vn E -^i E", F >o F"

iff S + lMARsG^-nE a[r])/(i) E", F >o F" (by induction)

iff S \-n E i W(i) E', F ► F",
o[r2] ßW

S + IMARSG \~ E' >f{taii(i)) E", F >o F" and n • r2 = r

iff S \-n E i >head{i) E', F ► F",

G'hE' a[T2] >tail(i) E", F—^->o F" and n-r2 = r (by induction)

iff S hn+1 ExF i ►(ww.o) E' x F,
(a /3)[J"2]

G"rE' xF —■ haii(ifi) E" x F" and rl-r2 = r

iff S hn+1 ExF I >head(i,0) E' x F,

5 + IMARSG \~ E'X F {a,ß)[T2\ f{tail{m E" x F" and n-r2 = r (by induction)
(a ß)[r]

iff 5 + IMARSG Hn+i ^ x F '■ >f(ifi) E" x F".

The case i = 0 ^ j is symmetric.

a[p]
Relabeling: G' hn+1 £[/] H E"[f]

ß\p\
iff G' \-n E ^i E" and /(/?) = a

iff S + IMARSG \~n E >m E" and f{ß) = a (by induction)

iff ShnE ^head{i) E', S + IMARSG h E' ^> f{tail{i))E", Pi'P2=P and /(/?) = a

iff ShnE ^head(i) E\ G' h £' -^ t««(0 #'. Pi -P2 = P and /(/?) = a (by induction)

iff Shn+1£[/]AMi)^[/], G'hE'[f]^tail{i)E"[f], Pi-P2=P

iff Sh„+1E[/]ÄM^'[/], 5 + IMARSG h^[/]-Ä/(taa(0)£?"[/], Pi-P2=P (ind.)
Q[P]

iff 5 + IMARSG l-n+i-B[/] ►/« #"[/]•

Recursion: G' hn+i fixxE >i E
a\p]

iff G' h„ E{fixxE/X} >t E"
a\p]

iff 5 + IMARSG hi £{.fe£/X} >m E" (by induction)

iff S \-n E{fixxE/X} ^head(i) E\ S+IMARSG r-F " " >/(te«(0) £"andprP2=p

iff Sh,+i./u*E ^>w(i) #, 5 +IMARSG H^ ° ' >/(ta«t(»)) #" and pi-p2=p
(x\p\

iff 5 + IMARSG ^n+i /w*£ ►/« ^"- D

As an immediate consequence of this lemma, we obtain the following commutativity result:

31

Theorem 11 (Commutativity) Let P e Pr be restriction-free. Then ipsoi^PsiP)) = VG(P)-

Corollary 12 Let P,Q £ Pr be restriction-free PCCS processes. Then P ~ Q =4> P ~ Q.

Proof: Theorem 10 says that P ~ Q =» P ^ Q for P, Q € Pr. Theorem 11 (or Lemma 2) implies

HG(P,a,S) = HSG(P,a,S) and hence P ~ Q <S> P ?? Q for restriction-free ?,Qe Pr. □

Theorem 11 does not hold for arbitrary PCCS processes. Consider the process

P=ia.O + |(i6.0 + ic.O)r{a,6}

<pG(P) is equal to \a. 0 + \b. 0 while (PSG(<PS(P))
is ecLual to Jo. 0 + §6.0.

This counterexample can be easily extended so to apply to Corollary 12 as well.

However, Theorem 11 and Corollary 12 do hold for summation-guarded PCCS processes with
restriction. The reason is that for those processes there is hardly any difference between the
generative and stratified models. It suffices to extend Lemma 2 to this case.

Lemma 3 Lemma 2 also holds for summation-guarded PCCS expressions.

Proof: It suffices to add the case for restriction to the proof of Lemma 2. Check that the remark
concerning the induction base still holds. For the induction step we use that in the stratified model,
if E is summation-guarded and E i-^j E', then E' is an action process. This can be inferred by
a straightforward induction on stratified derivations. It follows that ua(E,A) = vs(E,A).

a\p]
Restriction: G' hn+1 E [A H E" \A

a\p-ua{E,A)}
iff G' H„ E ► i E" and a € A

a\p-uG(E,A)]
iff S + IMARSG U E > /(i) E" and a € A (by induction)

iS S^nE ÄMi) E\ f(tail(i))=0, S^E'^ E" and a E A
Q[1]

iff S\-n+lE\A ^head{i) P'U, S + IMARSG HE' —> /(teil(0) E" and aeA
a\p]

iff S + IMARSG l~n+i EIA >m E"\A. D

Finally, we show that the equivalence induced on the stratified model by generative bisim-
ulation is not a congruence for restriction. Consider processes Sc and Sc' of Section 1 (the

scheduler specifications). We have ipsG&siSc)) ~ VSG(<PS{SC')) but, as discussed in Section 1,

<PSG(<Ps(Scl{a,b})) $ <psa(<Ps(S<!}{a,b}))-

7.3 The Stratified to Reactive Abstraction

Let E, E' be PCCS expressions. Then IMARs/j is given by

E ► E' =>• E c—>o E'

32

a[q] Q[vs(£,{«})]

E _£+. E' c—>j E" => E c ^ £"

This inter-model abstraction rule defines a mapping ipsR ■ ®s -» ®R- Like the composed map-
ping tpoR o ipso ■ <&s -*• <BB, <PSä flattens trees of probability transitions with action transitions at
the leaves into a single-level structure, and normalizes the probabilities to yield a reactive transi-
tion system. However, whereas <pGR o (pSG first flattens and then normalizes, <pSR performs these
operations interactively. From the proof of Lemma 3 it follows that for summation-guarded PCCS
expressions there is no difference between both approaches. But in general the two mappings are
different, as will be demonstrated at the end of this section.

Theorem 13 (Abstraction) Let G,H E Gs. Then G ~ H =» VSR(G) ~ WSR{H).

Proof: Combine the proofs of Theorems 10 and 7. (It doesn't suffice to combine just the theorems
themselves since <pGR ° <PSG(G) # WSR{G) for an arbitrary stratified transition system G). □

Theorem 14 (Commutativity) Let P G PrR. Then <PSR(<PS(P)) = VR{
P

)-

Proof: We proceed along the lines of the proof of Theorem 11 (i.e. Lemma 2), substituting R's for
G's, but with the following modifications in the cases for the topmost operator of E.

a[s] i^-\

Summation: p = pj ■ q/r where r = ^ fa>i I Ei C—►* E"\ = vs(l^ \?i]Eit{a}).
iei ieI

Product: In case i # 0 ^ j: pi ■ p2 ■ 9i • qi = r ■ us{E, {a}) ■ vs{F, {/?}) = r ■ us{E x F, {{a, /?)})
and n-r2 = r- vs(E x F, {(a, ß)}).

In case i ^ 0 = j: n ■ r2 = r ■ us{E, {a}) = r • vs{E x F, {(a, ß)}).

<*[p]
Restriction: R'\-n+i EfA c H E"\A

a]p]
iff R' hn E c >{ E" and a G A

a\p]
iff 5 + IMARsij Hn E

c >f(i) E" and a e A (by induction)

iff S\-nE^head{i)E', S + lMARsRhE'^f{tail{i))E", pvp2 = p-us(E, {a}) and aEA

iff Sr-nE^wW^, R^E'<—^taü{i)E", prp2 = p-vs{E, {a}) and aGA (induction)

iff S\-n+1E{A^head{i)E'{A, RhE'{A^tail{i)E"{A and n • pa = p■ aggjgi

iff 5 hn+i E [A ^w(i) E' [A, S+IMARsuhE' [A <=—>f{taii(i)) E" [A, rrP2 =p-us{E \A, {a})
a\p)

iff S + IMARsß \-n+i EIA c >/(i) E" I A-

Relabeling: This case does not apply as E is a PCCSR expression.

Recursion: pi ■ p2 = p ■ us(E{fixxE/X}, {a}) = p ■ us(fixxE, {a}). □

33

Corollary 15 Let P,Q € PrR. Then P~Q=>P%Q.

By means of the same counterexample that we used at the end of Section 7.1, one shows
that the equivalence induced on the stratified model by reactive bisimulation through (fsR is not
a congruence for relabeling. As a consequence, no compositional definition of relabeling in the
reactive model is possible that allows a generalization of Theorem 14.

The corresponding counterexample for summation is also valid for ipoR ° fsc but not for ipsR
(in fact, it couldn't be, by Theorems 14 and 4). Hence these two mappings are different. It appears
that ipsR preserves some of the stratified flavor of nested PCCS summations, which is lost by

VGR ° tfSG-

7.4 The Probabilistic to Nonprobabilistic Abstraction

Let E, E' be PCCS expressions. Then IMARSJV is given by

E ^i £'-A E" => E-% E"

Similarly IMARGAT and IMAR^ are given by

a

=> E > E'
a\p]

E u E'

a\p]
E c—>. E' => E —> E'

These inter-model abstraction rules simply throw away all probabilities. It is comparatively
straightforward to establish the remaining commutativity results announced in the introduction.

Theorem 16 (Abstraction) Let G,H G GR. Then G % H => <pRN(G) ~ <PRN(H).

Proof: Following the idea of the previous abstraction proofs, we show that a reactive bisimulation
on PTR is also a nonprobabilistic bisimulation (with respect to the transitions derivable from
R + IMAR#;v, but by commutativity these are the same as the ones derivable from TV). This
follows as (IN is completely determined by /z#, namely

„ (Pn c^_J ° if PR(P,<*,S)=0

As before, the general (semantic) case can be obtained in the same way, after defining the
involved bisimulations on the (semantic) transition system domains. Generative or stratified to
nonprobabilistic abstraction results can also be proved likewise, but these follow already by com-
bination with the previous abstraction results.

34

8 Conclusions and Open Problem

In this paper we have presented a variety of congruence, commutativity, and abstraction results
that carefully interrelate the reactive, generative, and stratified models of probabilistic processes.

In so doing, we have seen that generative bisimulation (~) is not a congruence in the stratified

model, while stratified bisimulation (~) is. However, ~ is not the largest congruence contained in

£ (it is too fine). For example, consider P = [l][l]a.O and Q = [l]a.O. We have cps(P) $ (ps(Q)

yet <PSG(<PS(C[P])) ~ ¥>SG(VS(C[Q])),
for anY context C[\.

It is interesting, therefore, to ask what is the largest congruence contained in ~. We can show
that, in terms of its distinguishing strength, the following equivalence relation falls strictly between

~ and ~, and is still a congruence in the stratified model.

Definition 8 An equivalence relation U C Pr x Pr is a mixed bisimulation if (P, Q) £11 implies

V5 E Pr/K,

• fis(P, *) S) = Vs(Q, *> S) if both P and Q are probability processes

• and Va € Act, HSG(P, OC, S) = HSG{Q, «> S)

Two processes P, Q are mixed bisimulation equivalent (written P ~ Q) if there exists a mixed
bisimulation 1Z such that (P, Q) G 11.

Mixed bisimulation essentially allows an a-transition in one process to be matched by an a-
transition preceded by a number of probability-1 transitions in the other process (the second clause).
At the same time, probability-1 transitions at other places may be significant in a product context,
and must therefore be taken into account (the first clause). We close with the following:

Conjecture (Full Abstraction) In the stratified model, ~ is the largest congruence contained
. G
in ~.

Acknowledgements: We would like to thank Chris Tofts for his collaboration in [vGSST90],
from which the current paper evolved, and Kim Larsen and Robin Milner for valuable discussions
on models of probabilistic processes. We are also indebted to the anonymous referees for their
helpful comments.

References

[BBS92] J. C. M. BAETEN, J. A. BERGSTRA & S. A. SMOLKA (1992): Axiomatizing proba-
bilistic processes: ACP with generative probabilities. Technical report, Dept. of Math
and Computing Science, Technical University of Eindhoven, Eindhoven, The Nether-
lands. Extended abstract in W. R. Cleaveland, editor: Proceedings of CONCUR '92,
LNCS 630, Springer-Verlag, Berlin, pp. 472-485, 1992.

35

[BM89] B. BLOOM & A. R. MEYER (1989): A remark on bisimulation between probabilistic
processes. In Meyer & Tsailin, editors: Logik at Botik, LNCS 363, Springer-Verlag,
Berlin, pp. 26-40.

[Chr90] I. CHRISTOFF (1990): Testing equivalences for probabilistic processes. Technical Re-
port DoCS 90/22, Ph.D. Thesis, Department of Computer Science, Uppsala University,
Uppsala, Sweden. See also Testing equivalences and fully abstract models for probabilis-
tic processes. In J. C. M. Baeten &; J. W. Klop, editors: Proceedings of CONCUR'90,
LNCS 458, Springer-Verlag, Berlin, pp. 126-140, 1990.

[CSZ92] R. CLEAVELAND, S. A. SMOLKA & A. E. ZWARICO (1992): Testing preorders for
probabilistic processes. In W. Kuich, editor: Proceedings of the 19th ICALP, LNCS
623, Springer-Verlag, Berlin.

[GJS90] A. GlACALONE, C.-C. Jou & S. A. SMOLKA (1990): Algebraic reasoning for prob-
abilistic concurrent systems. In M. Broy &; C.B. Jones, editors: Proceedings Working
Conference on Programming Concepts and Methods, IFIP TC 2, Sea of Gallilee, Israel,
pp. 443-458.

[vGSST90] R. J. VAN GLABBEEK, S. A. SMOLKA, B. STEFFEN & C. M. N. TOFTS (1990):
Reactive, generative, and stratified models of probabilistic processes. In Proceedings of
the 5th Annual IEEE Symposium on Logic in Computer Science, Philadelphia, PA, pp.
130-141.

[HJ90] H. HANSSON &, B. JONSSON (1990): A calculus for communicating systems with time
and probabilities. In Proceedings of the 11th IEEE Symposium on Real-Time Systems,
Orlando, Florida.

[JP89] C. JONES & G. D. PLOTKIN (1989): A probabilistic powerdomain of evaluations. In
Proceedings of the 4th Annual IEEE Symposium on Logic in Computer Science.

[JL91] B. JONSSON &; K. G. LARSEN (1991): Specification and refinement of probabilistic
processes. In Proceedings of the 6th Annual IEEE Symposium on Logic in Computer
Science, Amsterdam.

[JS90] C.-C. JOU & S. A. SMOLKA (1990): Equivalences, congruences, and complete ax-
iomatizations for probabilistic processes. In J. C. M. Baeten &; J. W. Klop, editors:
Proceedings of CONCUR '90, LNCS 458, Springer-Verlag, Berlin, pp. 367-383.

[Low91] G. LOWE (1991): Prioritized and probabilistic models of timed CSP. Technical Report
PRG-TR-24-91, Oxford University Computing Laboratory, Programming Research
Group, 11 Keble Road, Oxford OX1 3QD, England.

[LS91] K. G. LARSEN & A. SKOU (1991): Bisimulation through probabilistic testing. Infor-
mation and Computation 94(1), pp. 1-28. Preliminary report in Proceedings of the
16th Annual ACM Symposium on Principles of Programming Languages, 1989.

[LS92] K. G. LARSEN & A. SKOU (1992): Compositional verification of probabilistic processes.
In W. R. Cleaveland, editor: Proceedings of CONCUR '92, LNCS 630, Springer-Verlag,
Berlin, pp. 456-471.

36

[Mil80] R. MILNER (1980): A Calculus of Communicating Systems, LNCS 92. Springer-Verlag,

Berlin.

[Mil83] R. MILNER (1983): Calculi for synchrony and asynchrony. Theoretical Computer

Science 25, pp. 267-310.

[Mil89] R. MILNER (1989): Communication and Concurrency. International Series in Com-

puter Science. Prentice Hall.

[Par81] D M. R. PARK (1981): Concurrency and automata on infinite sequences. In
P. Deussen, editor: Proceedings of the 5th G.I. Conference on Theoretical Computer
Science, LNCS 104, Springer-Verlag, Berlin, pp. 167-183.

[Plo81] G. D. PLOTKIN (1981): A structural approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Department, Aarhus University.

[Pnu85] A. PNUELI (1985): Linear and branching structures in the semantics and logics of
reactive systems. In W. Brauer, editor: Proceedings of the 12th ICALP, Nafplion,
LNCS 194, Springer Verlag, Berlin, pp. 15-32.

[Sei92] K. SEIDEL (1992): Probabilistic communicating processes. Technical Report PRG-102,
Oxford University Computing Laboratory, Programming Research Group, 11 Keble

Road, Oxford 0X1 3QD, England.

[SS901 S A SMOLKA & B. U. STEFFEN (1990): Priority as extremal probability. In J. C. M.
Baeten k J. W. Klop, editors: Proceedings of CONCUR '90, LNCS 458, Springer-

Verlag, Berlin, pp. 456-466.

[Tof90a] C. M. N. TOFTS (1990): Proof Methods and Pragmatics for Parallel Programming.
PhD thesis, LFCS, University of Edinburgh.

[Tof90b] C M N TOFTS (1990): A synchronous calculus of relative frequency. In J. C. M.
Baeten & J. W. Klop, editors: Proceedings of CONCUR '90, LNCS 458, Springer-

Verlag, Berlin, pp. 467-480.

[YL92] W. Yl & K. G. LARSEN (1992): Testing probabilistic and nondeterministic processes.
In Proceedings of Protocol Specification, Testing and Verification XII, pp. 47-61.

37

